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Vertex operators and composite supersymmetric S-functions 

P D Janist and C M Yung 
Department of Physics, University of %smania. GPO Box 252C H o b a  Australia 7001 

Received 9 November 1992 

AbstracL The S-funnion basis for the Fock space of venex-operator mnstructions is 
considered, where states are associated with partitions IX). We show that the matrix 
element ( X ~ V ~ ( z ) ~ p )  b essentially given by the composite S-function si,(:) where 
the argument i z-' is replicated la1 times Mat& elements of products of vertex 
operato~(XlV=(r)V_ B(w)...Ip) aregivenuptofunctionsof (;,to, ...) independent 
of X and p by the mmposite mpenymmerric S-function si,(:, . . . /a7.. .) where the 
5 ,  a,. . . are replicaled [el, 181,. . . times, the supersymmetric arguments k i n g  those 
assodated with negative mts. 

As an application of these results, cenain trace and product formulae in the vertex- 
operator constructions are verified using S-function identities for various infinite series. 
On the other hand, McDonald identities formulated in terms of S-funnions have a 
simple intelpretation as vertex-operator matrix elements between appropriate states In 
the case of level-one representations of Kac-Moody algebras (in pnicular AI(') ), the 
operator product expansion for the currents is verified for arbitrary matrix elements. 
Finally the Sugawara mnstruction of the energy-momentum tensor for wrrents of 
arbitrary level is established using suitable regulated partial traces over the Iwel-one 
'reference' representation. 

1. Introduction 

Vertex operators were introduced originally in string theory, but have come to play 
a key role in many different contexts in mathematics and physics [I]. Besides their 
special use in string emission amplitudes, they are the general vehicle for the pelvasive 
fermion-boson equivalence in two-dimensional field theory. More specifically, through 
the so-called Coulomb gas method, the vertex constructions are important in many 
aspects of conformal and superconformal field theory and applications [2]. On the 
mathematical side, the vertex construction provides a systematic my of obtaining 
concrete realizations of the basic (level-one) representations of affine Kac-Moody 
algebras [3] and superalgebras [4], which in turn are intimately related to conformal 
and superconformal symmetry; higher level constructions are also possible [q. Further 
generalizations of the vertex operators describe mappings from the Heisenberg 
algebra into gl(co) or gl (m/co) ,  and the formulation of hierarchies associated with 
such integrable nonlinear equations as the KdV and KP equations [6] has also relied 
on properties of such vertex constructions. Finally, certain classes of wavefunctions 
for multi-anyonic systems have been found to be intimately related to appropriate 
vertex-operator matrix elements [7J 
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1882 P D Jaw& and C M Yung 

The theme of the present paper is that the theory of symmetric functions, 
or S-functions [SI, provides an important tool for the analysis of vertex-operator 
constructions, which hitherto has not been fully exploited. The name derives from the 
seminal work of Schur on the theory of the symmetric group; the intimate relationship 
betwen the latter and the Weyl group of simple Lie algebras leads, in turn, to the 
application of S-functions to group characters and the representations of simple Lie 
algebras and superalgebras 19-11]. 

The link with S-functions in the case of vertex-operator constructions is not 
through group characters, or enumeration of irreducible representations, hut rather 
via the structure of Fock space. Specifically, basis states of the form 

(a-n)f"(a-n+l)i-l _ ' '  ( 4 Y 4 I l O )  (1) 

x = (n '=,(n- l ) f" - l , .  . . ,ZfZ,lfI) 

comprising negatively moded 'creation' operators with l n , l n - l , .  . . , 1 2 , 1 f  2 0 acting 
on the 'vacuum' state IO), are naturally associated with partitions 

where 1x1 = l,n + ln-,( n - 1) + .  . . + 21, + lI ,  is the level (or occupation number). 
This suggests that kets can be succinctly labelled by all possible partitions IX), so that 
if d is the level operator the 'qdimension' would become, for example, 

x i=1  

as expected, where the trace is over all Young frames A. 
This connection has been exploited to good effect and it can indeed be shown 

[I21 that the entire calculus of S-functions and their generalizations has a natural 
meaning in terms of appropriate bases for Fock space. The vertex operators are 
introduced through their Laurent modes, and are related to partitions in the manner 
indicated in (1). The discussion has been extended to qdeformcd vertex operators 
and associated algebras and qdcformed S-functions 1131. 

In the present paper we focus on the original (undeformed) field theoretical vertex 
operators Vg(z) (where the root a determines the conformal dimension ;a2). In 
section 2 we introduce the S-function basis for Fock space and examine the matrix 
element (AIVe(z)lp). Following earlier work [14], our main new result I151 is that 
it is given by the composite S-function 8 ~ ; ~  where the indeterminates forming its 
arguments are specialized to 4 = 1/z, replicated la( times (the S-function can be 
formally defined for non-integral a in this case). A result such as this is perhaps 
not surprising: for example, it is to be expected from the levels of IX)  and lp), and 
confirmed by the degree of homogeneity of the S-function, that the matrix element is 
a function of z ( ~ ~ ~ - ~ ~ ~ ) ,  so that only certain Laurcnt coefficients of 1; are involved. 
However, the reformulation in terms of S-functions has far-reaching consequences 
for further manipulations of vertex operators. Thus as shown in section 2, products 
of vertex operators and matrix elements of the form (A~V,(Z)V-,(UI). . . I p )  is given 
by the supersymmetric composite S-function s i i p ( . ? ,  . . . / G , .  . .) with the arguments 
replicated 1011, ( P I , .  . . times, the supersymmetric arguments being the ones associated 
with negative roots. 

In section 3, as an application of these results, certain trace and product 
properties of the vertex operators are derived using various S-function identities 
[16,17]. In particular, we compute the regulated trace ~ x ( A l t ~ ( ~ ) V - , ( ~ ) .  . .qdlp)  
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by interpreting the resulting S-function sum as a supersymmetric MacDonald identity. 
Other MacDonald-type identities [16] can be interpreted in Fock space as resulting 
from different types of trace, or matrix elements between the ground state and certain 
'reservoir' states, of products of vertex operators (see appendix 2). 

In section 4 we reconsider the relationship between the vertex construction and 
representations of infinite-dimensional algebras. We fust examine the singularities 
of matrix elements in the S-function basis of products of vertex operators when 
the points at which they are defined coalesce. Thus we verify the operator product 
expansions directly for the case of the level-one vacuum representation of AI(') 
(CY = +d). In this case, a natural current operator A( z )  is introduced on the tensor 
product of an arbitrary representation with the basic representation as 'reference' 
representation. It is shown that, in an appropriate contour integral, the regulated 
partial trace of A(z)A(w)  over the 'reference' representation gives essentially the 
energy-momentum tensor, thus recovering the Sugawara construction from a trace 
formula in this framework. 

The concluding remarks in section 5 provide an outlook for further extensions of 
the S-function calculus to applications in conformal field theory, statistical systems 
and their associated symmetry algebras. 

2. Vertex operators in the Schur function basis 

We work with the untwisted vertex operator, 

For convenience we will refer to the first exponential as \Lt(z) and the second 
as V;(z). The operators a, satisfy the commutation relations of the Heisenberg 
algebra 

[Q,>%I = m6,t,,o. (3) 
For later reference we also introduce in the standard way a further (momentum) 

operator a, E p, which commutes with the a, and a- ,  (so that the algebra for 
m E 22 remains that of (3)) and which is represented on the tensor product of the 
Fock space of the a, with a Hilbert space associated with p" and its conjugate qo, 
where [q", pol = i, with momentum states Ipx) obtained by acting with eiprqO on the 
vacuum state IO). In section 4 we shall need the modified vertex operators including 
momenta, 

U,(z) = z ~ 2 ~ ~ v , ( z ) e i Q % ~ p ~ .  (4) 
A realization of the Heisenberg algebra, and hence of the vertex operators V,( z )  

and U,(z), in terms of symmetric functions is the concern of this section and the 
starting point of the applications to be discussed in the next two sections. Fit it is 
necessary to introduce some preliminary notation and definitions. 

We use the conventions of MacDonald [SI, as far as is possible. The power sum 
symmetric functions p,(x), n = 1,2,. . . of indeterminates x = (xl,x2,. , .) are 
defined by the generating function 

m d 
dt 

m 

P ( l )  = pm(")P-1 = - logIT(l-  zit)-'. 
i=l m=l  
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W r  a partition X = (XI,&,. . .) define pA = p A , p A 2 . .  .. Then the p A ( z )  form a 
basis for the symmetric functions of the I;. 

There is a wide variety of other integer and non-integer bases for the ring of 
symmetric functions [SI in addition to the power sums. Of particular concern are the 
so-called elementary symmetric functions e,(.) and the complete symmetric functions 
h,(z), which can be defined through their generating functions 

P D Jawis and C M Yung 

m m 

(6) 
These are, in fact, both special cases of the the Schur or S-functions sA(+) 
which, like the px(z) ,  are labelled by arbitrary partitions X and which possess 
determinantal expansions in terms of the pn(z), e , ( r )  and h,(z) [SI. It turns 
out that h,(z) E s(%,(z), and e,(r)  = s(,* (z). In the case of the p,(z)  the 
relationship to the Schur functions entails the krobenius formula for the characters 
of the symmetric group, 

More generally there exist /ransition malices expressing the basis transformations 
between the various sets of symmetric functions. In section 4 we shall require formula 
(7) and write x[,,, = J Y - ~ ( ~ ) ~  where the Kostka matrix ICxp in general gives the S- 
functions in terms of yet another set, the monomial symmetric functions. 

There is a natural inner product (,) under which p x ( z )  form an orthogonal set. 
If one defines the operation D ( f )  as the adjoint of multiplication by the function 
f ,  then [SI D ( p , ( z ) )  = na/ap,(z). In particular, D ( p , ( r ) )  is a derivation on 
the space of symmetric functions of z. We thus have a realization of the Heisenberg 
algebra (3) in the space of symmetric functions by associating 

a-, * P,(Z) and an D(p, (z ) )  

where n is positive; pu can be represented in the manner described earlier if required. 
From this point of view the link discussed above between Fock space number states 
and partitions is simply the selection of the p A ( z )  as a preferred basis. However 
the Schur or S-functions themselves form another Z basis for the ring of symmetric 
functions, orfhonoimal with respect to the same inner product (,), and is a more 
natural basis to use for labelling states in Fbck space for representing the vertex 
operators, as we shall see. 

The action of the vertex operator in this basis is facilitated by describing the vertex 
operator itself as a linear combination of S-functions. The following S-function series 
will figure prominently in what follows: 

m 

J * ( z ; z )  = ~ * ' x L A ( z ) s A ( z )  = JJ ( 1 -  q z i z j ) - l  (8) 
A i , j=l 

m 



Vertex operators and composite supersymmem‘c S-functions 1885 

where A’ is the partition conjugate to A, 1x1 is the length of the partition, and the 
sums run over all partitions. We use the generating function (5) for p , ( z )  and the 
identities (8) and (9) to write 

V 2 ( z )  = n(l- .iZ)-” 

<> 1 

Here z is (formally, for a not a positive integer) such that z, = z2 = . . = z 0 = z 
and zUs1 = ze+* = . . . = 0, and sX(z) is given by [SI 

where the generalized binomial coefficient is defined as 

(;j = I-I 
nEA 

with c ( n )  and h(n)  being, respectively, the content and hook length corresponding 
to node n of the partition A. The same treatment is applied to rg-(z) resulting in 
the following realization of the vertex operator: 

where we use the notation 4 
’Ib calculate matrix elements we require the notion of S-function multiplication 

defined by s p s y  = E,, c i Y s ,  with ciY being the Littlewood-Richardson coefficients, 
and that of a skew S-function s A I p  defined by s X / p  = C v c ~ , s , .  Using the 
orthonormality of the S-functions, the vertex-operator matrix element ( Vu(z))p,,, 
defined by 

can be calculated to be 

l /z.  

(Ve(z))+I, = ( s p ( s ) ,  vu(z)s”(z)) 

( -1)I~l  C ( - l ) ’ x l s p / X ( z ) s ” , / X , ( i )  c1 > 0 

(-1)lrl x(-l)lXlsp,/X(z)s~/X,(~) a < 0. { A 

(V”(z))p” = 

We note that this can be expressed in terms of a composite S-function or ’universal 
character’ introduced by King Ill,  161 in the context of representations of Lie algebras 
and Lie superalgebras and defined as 

sP;(l(+) = C ( - 1 ) ’ E ’ 5 ” / E ( ” S p , ~ ~ ( z ) .  (12) 
E 
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WO other concepts are of importance here: that of an S-function of a compound 
argument, defined by 

P D Jawis and C M Yung 

and that of a supersymmetric S-function, defined by 

S,(+/Y) = c(-l)’Al.p,A(.).A~(Y). 
x 

Supersymmetric S-functions figure prominently in the study of representations 
of superalgebras, but were already !mown to Littlewood [9,10,16]. Composite 
supersymmetric S-functions can also be defined, as in (12) but with the argument 
x replaced by sly.  Io terms of these S-functions we can write the vertex operator 
matrix element as 

Thus far, we have made the distinction between positive and negative a 
explicit. However, we can obtain a unified description if we adopt the notation 
((zl, z2 , .  . . , zm)) for the S-function argument which has all the zis corresponding 
to all the positive (negative) ais  to the left (right) of the slash in (. . . / . . .). Then, 
the matrix element (13) is given by 

The vertex operator (11) itself can now be written simply as 
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Form the ‘generating function’ E,, B,,(z /y;w/z)s , (r)s , , ( t ) ,  rewrite it as a series 
in another way and compare coefficients of s , (r)s , ( t )  in the two expressions. We 
find that 

B , L Y ( + / Y ; W / 2 ) 5 p ( T ) 5 y ( t )  

= sa(’)Sa(I/y)(-l)~~lS7(t)Sy,(Zi)/4) 
@,?*A 

x ( - l p S x ( 5 / g ,  T ) S A ( W , t / Z )  

= Jl (r ;  x / y ) I l ( t ;  C / ? ) I 1 ( : / g ,  T ;  w, f / z )  

= I ,  ($/e; w / z )  J ]  ( r; 1 )  J1 (r;  I ,  w / y , z ) I ,  ( t ;  5 ,  a/g ,  4). 

where we have wed results from appendix 1. The last three products can be written 

Jl(r; t )JI(r ;z ,w/y,  z)Zl(t;j., C/g, i) 

as 

= s @ ( T ) s @ ( t ) s 7 ( ‘ ) s 7 ( ” ,  w / Y , z ) ( - l ) l x l S x ( f ) S x . ( i . , ~ , 9 , f )  
0.7,x 

At the operator level, this says that 

, 

Finally it should be remarked that arbitrary matrix elements of products of vertex 
operators can also be given in the number basis associated with the power-sum 
symmetric functions. The results [15] turn out to be expressed in terms of produm 
of Charlier polynomials over the partition labels and the arguments of the vertex 
operators. 
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3. S-function identities and vertex-operator properties 

Inherent in the S-function realization of the vertex operators is the possibility of 
bringing to bear the tools of S-functions in computing properties of the operators 
themselves. Here we transcribe various S-function identities and generating functions 
into the vertex-operator language. Some of the resulting vertex-operator identities 
are naturally interpreted in terms of, for example, insertion of complete sets of 
states; other formulae reveal some interesting and perhaps unsuspected properties 
of matrix elements involving what we term 'reservoir' states which are motivated 
naturally from issues of S-function generating functions. Finally we show how the 
S-function calculus may be used to compute the formula for the trace of a product 
of vertex operators. Although this can be computed by standard means [12, IS], the 
derivation in the S-function notation uses an elegant supersymmetric generalization 
of an S-function transcription of a MacDonald identity [16] and b worth presenting 
in its own right. 

3.1. 

A natural concomitant of the theory of S-functions is the formal calculus of 
generating functions for certain infinite series (see [16] and also King Ill]) which 
arise naturally in the application to finitedimensional Lie algebras [9,11] and which 
can be considerably generalized 1191. Here we consider their counterparts in the Fbck 
space of the vertex operators, and their implications for matrix elements, products 
and traces of vertex operators. Generically such a generating function may have a 
particularly simple expression in terms of the indeterminates q; matrix elements of 
a product of vertex operators involving the corresponding Fock states must attain a 
similar form in the parameters zi in terms of which the vertex operators are defined. 

We note from (15) and the definition (12) of the composite S-function that for 
the special case of q = a2 = . . I = 1 we have 

P D Jamb and C M Yung 

S-function generating functions and vertex-operator matrix elemcnls 

The products in (17) can be formally treated as being infinite; and on the same 
footing as the S-function being a function of an infinite number of variables. In fact 
we can get rid of the product factor on the right-hand side of (17) by normal ordering 
the left-hand product. More specifically, we use the result (see, e.g., [15]) 

where by :: we mean the usual procedure of moving a, to the right of a, if n > vn. 
Generically a series defined by 

will be associated with a 'reservoir' state of fype Zq, 
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which is a formal coherent-like sum over all X in the set 2, which may include all 
partitions or some distinguished series. Thus the overlap with the vacuum state of 
a product of vertex operators acting on such a reservoir state will regenerate the 
original generating relation, now in terms of the parameters z i ,  and leads m some 
perhaps unsuspected identities for the vertex realization. 

In appendix 2 are (see equations (5)) given generating functions for several of the 
standard infinite S-function series, and here we list the resulting vacuum-reservoir 
state vertex-operator matrix element following the above prescription: 

'I (Al:Vl(zl)V,(z,).~.:lO) = n ( l - q z j z j )  
i < j  

*(B~:V,(r,)VI(2,)"':~0) = n ( l - q Z i Z j ) - l  

4 (c~:vl(zl)V,(zz)...:~o)= l-J(I-qzizj) 

4 (Dl :vl(zl)V,(z,)"':~0)= n ( l - q z i z j ) - l .  (19) 

i < j  

i < j  

i < j  

It is convenient to define modified S-functions (and corresponding kets) Si,,]( z) 
SXlc(z ) ,  ([All = (X/C(, S,?,(+) (X/A(, where the notation 
indicates S-function division dwibuted over all admissible elements of the indicated 
series. Then the MacDonald identities written in terms of S-functions in appendix 2 
merely express matrix elements of vertex operators with the corresponding reservoir 
states: 

SA,A(z), ((A)( 

m 
q (A/CI : x(zl)V,(zz). ' .  : 10) = n n(1- q'zizj)  

k=1 i < j  

m 

4 (C/AI:V,(*~)V,(I,)...:~O) = J J n ( I - q ' z i z j ) .  (20) 
k = l i < j  

Fbrther MacDonald identities in the S-function basis can be rewritten in an obvious 
way in terms of vertex-operator matrix elements, but the general wanscription is 
obvious from these examples. In fact, the evaluation of the vertex-operator trace 
in the S-function basis necessitates a further MacDonald-type identity, this time for 
composite supersymmetric S-functions. This case is examined in the next subsection. 

In closing, we would like to mention that the basic series I , (  3; z )  itself (cf (9)) 
has a natural interpretation in terms of the wcuum-to-vacuum matrix element of the 
normal ordered product of vertex operators evaluated at wl ,  w,, . . . with the normal 
ordered product of vertex operators evaluated at zl, z,, . . ., 

m 

I1(3; 2) = l-J = (01 : V,(wr)V,(w,) . . . :: V,(z,)V,( z,) . . . : IO). 
i , j=l 

This follows from (17), (3.1) and the result 

(01: V,(w,)V,(w,)...: 1.) = (-1)1%",(73,,73* )... ). 
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3.2. Verter-operator trace formula and MacDonald identities 
For the trace of an arbitrary product of vertex operators we need to sum the 
expression 

P D Jaw& and C M Yung 

C(-Q) 'P ISe;p ' ( (Z l rZ2r . .  .,.,)). 
P 

For the case when n = 1 and al > 0, we note that the answer lies in the 
reformulation in the 5'-function language 1161 of a MacDonald identity 

where Io(z;y) is defined in (9). The supersymmetric generalization 

which we shall need is derived in appendix 2, equation (53). 

operators, 
Recalling the result (15) for the matrix element of an arbitrary product of vertex 

(v,,(r,)...V"~(z,)),,, = n ~ l ( ( ~ j ; ~ i ) ) ( - l ) ~ " ~ ~ ~ ; , , l ( ( ~ l , ~ ~ , . . .  3 % ) )  

l<i<j<n 

= n (1 - 2)- (-l) ' ' 'sP;",((~l ,z~, ,  . . . ,%)) (23) 
1<i<3<n 

the trace of an arbitrary product of vertex operators can be evaluated as 
T~(~21(4 ' ' ,  van(zn)¶L@) 

fi [ fl (1 - q'?)"'"J]. (24) 

n-,a,. Using (22) 

"."j 

= ( 1 - 2 )  
I < i < j < n  rIL(1- 4') k=L 

Here, L, is the Viasoro operator defined by L ,  = ; p i  + 
we therefore have the result 

For the case of AY), where the momentum lattice is r = Zn and cy = d! we have 
the well known rcsult 

I' ( 1  - q"2 

k = l  
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4. Vertex operators, S-functions and representations of affine algebras 

In this section we consider the vertex operators (2) and (4) as a vehicle for 
construction of representations of various classes of infinitedimensional algebra. 
Thus, for example, we have for a = 1 a free fermion, a = %fi the currents for the 
non-zero roots of AI(’), in the level-one vacuum representation, and for a = &fi 
the fermionic generators of a c = 1 realization of the N = 2 superconformal algebra 
[ZO]. Using the results of the previous sections, we Erst examine the explicit form of 
the relevant operator products as the points at which they are defined coalesce. This 
is done for arbitrary matrix elements ( p ~ , X I U , ( z ) U _ , ( w ) l p l , , ~ )  and a systematic 
expansion in powers of ( z  - w )  is shown to be constructible in principle. In particular 
we verify the singular terms in a = *fi case, and thereby the corresponding 
commutators of the associated infinite-dimensional Lie algebra. 

In the case of finite-dimensional Lie algebras, an important tool 1211 is the 
consvuction of an operator A in the tensor product of the enveloping algebra with 
the space of endomorphisms of a module termed the ‘reference’ representation. 
In terms of a basis { X , }  of the Lie algebra and its dual basis { X u } ,  we have 
A = E, X ,  @ ?r(Xa),  and A commutes with the diagonal action of the Lie algebra, 
so that characteristic identities and Casimir invariants can be defined in terms of it. 
The generalization of the former has been exhibited for the KaoMoody case [22]; 
the latter requires suitably defined traces over the ‘reference’ representation, and 
the present S-function basis suggests itself as an appropriate means of handling the 
construction in this case. 

’M&g up the A,(’)  case, a natural current operator A ( - )  is introduced on the 
tensor product of an arbitrary representation with the vertex (level-one vacuum) 
representation as ‘reference’ representation, which is the analogue of the operator A 
in the finitedimensional case. We shall see that, in an appropriate contour integral, 
the regulated partial trace of A ( z ) A ( w )  over the ‘reference’ representation gives 
essentially the energy-momentum tensor, thus recovering the Sugawara construction 
from a trace formula in this framework. 

4.1. Operator product algebra in the S-function basis 
We shall make use of the general expressions for matrix elements developed in the 
S-function basis in section 2, for the case ( X , ~ , I U , ( ~ ) U - ~ ( ~ ) I I I , ~ ~ ) .  In the A,(’)  
case we have a = fi , and the vertex operators in the standard way [3] become 
the currents for the positive and negative roots fa up to cocycle factors. Here and 
below we denote U,,(z) z j+(z) ,  and the current corresponding to the Cartan 
element is j,( z )  = h( z )  /a, where 

1891 

CU 

h ( z )  = pu + C(anz - ,  + a-,znj. (27) 
n=l  

From the general form (15) and (14) we have on writing z = w + ( z  - w) in the 
prefactor I , ( I / O ;  Ole) the result 
(X,P,lCI,(z)U-,(w)l~,p,) 
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where the limit 'U) + z still has to be taken in the S-function. For the latter task we 
recall fiom section 2, the generating function 
CS~(T)S~(~)(-I)I~IS~;~,(.~,O/O, C) = Jl(r;t)Jl(T; z,O/O,w)Il(t;i,O/O, c). 

P D Jawis mad C M Yung 

C l P  

(29) 
Consider, for example, the product Jl(r;z,O/O, w ) :  

where 
(31) 

ri w 3 F. = = T ~ W  + (riw)' + ( r i w )  + ,  , . . 
I ( I -TpJ )  

Now symmetric functions of the Pi may be re-expressed in terms of the T; using 
the notion of plethysm, a @I p [SI. In view of (31) and recalling (7) in section 2, we 
have 

= wql)(r)  + wzs(2)(r) - w2s(ll)(r) + .. (32) 

SA(+) = s ( ( l )+(z) - ( l l )+ . . . )~x(r) .  (33) 
so that 

In the present case (a = a) the general expression for the distributive law for 
plethysms [9] is not required, and from (30) we have 

and the same reasoning leads to 

(35) 
involving S-functions of ti- The fmal result is obtained when the last two equations 
are substituted into (7%) leading to the generating function in the form 
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up to O(z - w ) ~ .  Finally this result must be compared with matrix elements of h ( z ) .  
From (27) above and (5) in section 2 we have the generating function 

Csh(p) (X ,PhIh(z ) l~ ,Pp)Sp( t )  
A +  

m 

= ( s p , p ~ ) ( P ~ C s ~ ( r ) s , ( t )  f z-"sh(r)k(+)sh( . ) , . , (+) )  
A A,& n=l  

oa 

S p ( t )  t CCz"sA(r)(Sh(~)'Pn(r)Sli(r))Sp(t)) 
h , p  n = l  

= ( 6 p ~ p s ) (  ~ p h s A ( r ) s A ( t ) t ~  ~ - ' ~ ~ ~ ~ z - * S A ( ~ ) s ~ . h ( t )  
A h m>1,1+m 

t C z n K - ' I " ) ~ f D S p . p ( r ) S u ( t ) )  (36) 
li n>l,lpl=n 

where (7) and (2) and the properties of the inner product have been used. 
Comparison of (35) and (36) establish, at tbe level of arbirraty matrix elements, 
the operator product expansion valid for the AI(') case, 

j+(z) j - (w) = ( z - w ) - Z + 2 ( z -  w)-LJzj"(w) 

with central charge IC = 1 as required. 

4.2 The Sugawara constiucfion and S-function waces 

Corresponding to the currents j*(z),&( z )  providing the level-one vacuum 
representation of A,('), we introduce the currents J * ( z ) , J ( z )  which act in an 
arbitrary representation (or, more generally, in the enveloping algebra of A,(')). 
Consider the combination 

A ( z ) =  Ju(z,)@ju(z)+ J + ( z ) @ . i - ( z )  t J - ( z ) @ j + ( z ) .  (37) 
Now 

where { J i } , { J j }  are dual bases for the Lie algebra of A,, [ J ; , J j ]  = e i j k J k ,  and 
{jj(z)},{ji(z)} the corresponding currents in the vertex representation. Hence 
A( z )  in (37) is $e natural generalization of the central invariant A which can be 
used to formulate characteristic identities for both the Lie algebra [21] and K ~ G  
Moody [22] cases. Henceforth we drop the @ for notational simplicity. 

In the light of the above remarks we introduce the regulated trace of the product 

QTr,(A(z)A(w)) = T r { ( H ( a ) h ( z )  t J+(z)j-(z) t J - ( z ) & ( z ) )  

x ( H ( w ) h ( w )  4- J + ( w ) j - ( w )  + J-(w). i+(m))qdl  

-t J-(z)J+(w) Tr,(j+(z)j-(w)) (38) 

= f f ( z ) f f ( w )  Tr,(h(z)h(w)) + J+(z)J-(w) Tr,(j-(z).i+(Uj)) 
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where we have used momentum conservation to select only the diagonal combinations 
in momentum space and d E L,. 

The traces can be evaluated using the S-function basis and the results of section 3. 
In order to ensure convergence in the present case of infinite-dimensional algebras, 
normal ordering must be ensured-in the finite-dimensional case this step is not 
necessary. At the level of the operator A(z) this is incorporated via radial ordering 
in the contour integral [U], 
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(AA),(w) 3 fwdz(z-w)Tr,(RA(z)A(w)) 

= i d - ( = -  w)Tr,(A(z)A(w))-/  d z ( z -  w)Tr,(A(w)A(z)). 
< 

(39) 

Each term of (39) is of the form (38), and the labels 4 and > stand for the 
contours JzI < (wI and Jz[ > J w J  respectively. We consider the contributions in pairs 
where the same operators are involved but with different ordering. Consider, for 
example, 

k = l  

where the result (26) has been used for Q = &. Examination of the terms in 
the infinite products shows that singularitis appear at z = u y i k  in the JzJ 4 J w J ,  
(21 > IwI cases respectively. Thus for k e d  IqI < 1, a contour can be chosen to avoid 
these double poles, and the remaining contours combined into a contour around the 
simple pole z = w, if the radial ordering convention is understood. Moreover, since 
the contour will pick out the residue of the integrand at the pole, the substitution 
z = w may be made in the qdependent part. 

The same result can obviously be obtained for the J+(z)J-(w) contribution 
to (39). The contribution from the H ( r ) H ( w )  terms is more difficult but can be 
derived from the vertex-operator trace by suitable differentiation. First we write 

T r h ( z ) h ( w ) q d  = Tr((h(z) - p , ) ( h ( w )  - Pu)qd) t Tr(p,)Zqd 
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where the off-diagonal nature of ( h ( z )  - po)  has been used. Next since 

we have 

Tr h( z )h(  w)qd = Tr( V,, (z)V-,( w)qd)] 
n=+o 

+ Tr((Pu)z4d) .  (41) 
Including the trace over momentum states, the result of the differentiations gives a 
formula comparable to (26), 

This result can now be used in an analogous manner to (26) to establish the 
H ( z ) H ( w )  contribution to (39): 

d r  ( z  - w ) H ( z ) H ( w )  Tr(h(z)h( w)qd) 

dz ( r  - w ) H (  w ) H (  z )  Tr(h( w)h( z ) q d )  -i 

) ( z  - w)Z (4% + l)(q"/z + q"/ur) - 4qZk 
(1 - q"r/z)( 1 - q"/ur) x ( 1 +  zw c 

- i d -  ( z  - w ) H ( w ) H (  . 4 (43) 

In this case, because of the persistence of ( z  - U!) factors, only the leading terms in 
the first two integrals have simple poles at t = w. The last two integrals have no 
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simple poles, while the single poles at z = wq*k in the 121 < IwI, l z l l ~ l  cases which 
now appear (cf (40)) can again be avoided for k e d  q by suitably chosen contours. 
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Combining (40) with (43), we have simply 

Including the appropriate normalization factor to remove the singular qdimension, 
the limit q - 1 can be taken and the result is essentially the current corresponding 
to the Viasoro algebra: 

As well as being an application of the trace formulae for vertex-operator products, 
this result shows that the Sugawara construction [24] can be recovered entirely in 
terms of the operator A ( z )  and demonstrates the utility of this construction. The 
relationship of A ( z )  to the characteristic identity [22] and other properties can be 
expected to be established with the help of the S-function realization of the reference 
representation fumisbed by the vertex operators [25]. 

5. Conclusions 

The goal of the present paper has been to point out the intimate connection between 
vertex-operator constructions and the theory of S-functions: as we have shown, 
vertex-operator matrix elements are basically composite or universal S-functions of 
their arguments. As a verification of the techniques, we have derived certain trace, 
operator product and current algebra constructions in the S-function basis. On the 
other hand, it turns out that certain combinatorial identities and MacDonald identities 
involving S-functions have an extremely natural transcription as matrix elements in 
Fock space. 

Further development of this work can be expected through the full exploitation 
of the theory of S-functions to vertex-operator constructions. For example, vertex 
operators for mot lattices of rank greater than one should be associated with S- 
functions of compound arguments; nor have the implications of the Littlewood- 
Richardson rule for manipulation of vertex-operator matrix elements been fully 
examined. Also, the use of non-orthonormal bases such as the kets / [A]) ,  /(A)) 
which arise naturally in connection with MacDonald identities, together with their 
dual bases /[A]') 5 I X .  D ) q ,  I(X)*) E I X r  B ) q ,  (defined for IqI < I), may have 
interesting applications for realizations of affine algebras. 
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Appendix 2. S-function series 

We give the notation for several of the standard infinite S-function series frequently 
used in the representation theory of finitedimensional algebras and superalgebras 
1161, and which are given a Fock space interpretation in section 3 (see equations (19)): 

A , ( z )  = n ( l - q z i z j )  = ( -q) '""2s,(z)  

B,(z)= n ( l - q z i z j ) - ' =  qlpl/2sp(z) 

i<j U E A  

i<j PEE 

C,(z) = n ( 1 -  qziZj) = 

D,(z) = n(1- qzizj)-' = 

( - q ) ~ - q ( z )  
<<j 7EC 

( -q) '61/2s6(z) 
i< j  6ED 

where, in Frobenius notation, A and C are sets of partitions of the form 
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D is the set of partitions all of whose parts are even, and B is the set of partitions 
all of whose distinct parts are repeated an even number of times. 

MacDonald identities arise in this notation when infinite products are taken [16], 
and these also have their interpretations in Fock space, as shown in section 3, for 
example for the following two series: 

P D Jawis and C M Yung 

m 

Here the modified S-functions have been introduced in section 3 (see also 
conclusions). 
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Hence we have the important identity 

S i p / i 9 ( x / y ;  r / t )  = C ( - 4 ) 1 P I A , , , , ( x / y ; r / l )  
P 

= I , ( x / Y ; r / t ) S I p , 2 1 1 ~ - ,  ( X / Y i  r / t ) .  ('43.4) 

In the nonsupersymmetric situation, i.e. when y = t = 0, this identity was crucial 
in King's reformulation of a MacDonald identity. In fact, what is required for 
evaluating the trace of an arbitrary product of vertex operators is the supersymmetric 
generalization of this MacDonald identity! Specifically, the identity is 

'Ib prove this, we iterate (52) to obtain 

for any n. Now 

as n + CO for small enough IqI. Now Cc = nr=,( 1 - q k ) - l  and thus identity 
('43.5) follows. 
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